
A Comparison of Tetrahedral Mesh Improvement TechniquesLori A. Freitag and Carl Ollivier-GoochMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, Illinois 60439ffreitag,goochg@mcs.anl.govAbstract. Automatic mesh generation and adaptive re�nement methods for complex three-dimensionaldomains have proven to be very successful tools for the e�cient solution of complex applications problems.These methods can, however, produce poorly shaped elements that cause the numerical solution to be lessaccurate and more di�cult to compute. Fortunately, the shape of the elements can be improved throughseveral mechanisms, including face-swapping techniques that change local connectivity and optimization-based mesh smoothing methods that adjust grid point location. We consider several criteria for each ofthese two methods and compare the quality of several meshes obtained by using di�erent combinations ofswapping and smoothing. Computational experiments show that swapping is critical to the improvementof general mesh quality and that optimization-based smoothing is highly e�ective in eliminating very smalland very large angles. The highest quality meshes are obtained by using a combination of swapping andsmoothing techniques.Keywords. Mesh Improvement, Mesh Smoothing1. IntroductionThe use of �nite element and unstructured �nite volume solution methods is increasingly common for ap-plication problems in science and engineering. Regardless of the particular solution technique employed,the computational domain must be decomposed into simple geometric elements. This decomposition can beaccomplished by using available automatic mesh generation tools. Unfortunately, meshes generated in thisway can contain poorly shaped or distorted elements, which cause numerical di�culties during the solutionprocess. For example, we know that as element dihedral angles become too large, the discretization error inthe �nite element solution increases [2]; and as angles become too small, the condition number of the elementmatrix increases [9]. Thus, for meshes with highly distorted elements, the solution is both less accurate andmore di�cult to compute. This problem is more severe in three dimensions than in two dimensions, becausetetrahedra can be distorted to poor quality in more ways than triangles can. Compared with triangularmeshes, tetrahedral meshes tend to have a larger proportion of poor quality elements and to have elementsthat are more severely distorted.The algorithms for unstructured mesh improvement fall into three basic categories:1. point insertion/deletion to re�ne or coarsen a mesh [3], [14], [16],2. local reconnection or face swapping to change mesh topology for a given set of vertices [6], [10], [11],and3. mesh smoothing to relocate grid points to improve mesh quality without changing mesh topology [1],[4], [15].In this article, we follow a two-pronged approach to improve the quality of tetrahedral meshes. We startby swapping mesh faces to improve the connectivity and follow with mesh smoothing to adjust grid pointposition. Face swapping techniques are widely used, and we give only a brief overview of the methodsused. The most common approaches to mesh smoothing are variants on Laplacian smoothing [7]. While



these smoothers are often e�ective, they operate heuristically with no e�ort to locate points speci�callyto improve some quality measure. In this article, we present an optimization-based smoothing algorithmfor tetrahedral meshes. This algorithm is an extension of a highly e�ective and e�cient two-dimensionalsmoothing algorithm [8].The remainder of the article is organized as follows. In Section 2, we brie
y summarize face-swappingtechniques. In Section 3, we describe a mesh smoothing algorithm using local optimization. We then presentthe results of numerical experiments on several test meshes. Mesh quality improvement by face swapping,vertex smoothing, and combinations of swapping and smoothing is presented. Finally, in Section 5, we o�erconcluding remarks and directions for future research.2. Face SwappingFace swapping changes the local connectivity of a simplicial mesh to improve mesh quality. Each interiorface in a tetrahedral mesh separates two tetrahedra made up of a total of �ve points. A large number ofnonoverlapping tetrahedral con�gurations are possible with these �ve points, but only two can be legallyreconnected, or swapped. These two cases are shown in Figure 1. On the left is a case in which eithertwo or three tetrahedra can be used to �ll the convex hull of a set of �ve points. Switching from two tothree tetrahedra requires the addition of an edge interior to the convex hull. On the right of the �gure isa con�guration in which two tetrahedra can be exchanged for two di�erent ones. The shaded faces in the�gure are coplanar, and swapping exchanges the diagonal of the coplanar quadrilateral. The two coplanarfaces must either be boundary faces or be backed by another pair of tetrahedra that can be swapped two fortwo. Otherwise, the new edge created by the two for two swap will not be conformal.
Figure 1: Swappable con�gurations of �ve points in three dimensionsBecause each recon�gurable case has only two valid con�gurations, a quick comparison to �nd the onewith the higher quality is possible. If the higher-quality con�guration is not already present, reconnectionis performed to obtain it. In the case of con�gurations of equal quality, we select the two-tet con�gurationwhen choosing between two and three tet con�gurations, and we choose not to swap in the two-for-tworecon�guration case.We use two geometric quality measures to determine whether to locally reconnect a tetrahedral mesh: theminmax dihedral angle criterion and the in-sphere criterion. The minmax dihedral angle criterion choosesthe con�guration that minimizes the maximum dihedral angle of the tetrahedra formed by the �ve pointsin the two tets incident on a face. The in-sphere criterion selects the con�guration in which no tetrahedronformed by four of the �ve points contains the other point in its circumsphere. This leads to a locally Delaunaytetrahedralization in the sense that there is no face in the mesh with incident cells violating the in-spherecriterion that are recon�gurable. For either criterion, however, the optimum reached by this face-swappingalgorithm will probably be local rather than global. Recent work by Joe [11] describes a more advancedtechnique for improving mesh quality by local transformations. This approach notwithstanding, however, itis not known whether the global optimum can be reached by any series of local transformations.



3. An Optimization Approach to Mesh SmoothingPerhaps the most commonly used mesh-smoothing technique is a local algorithm called Laplacian smoothing[7], [13]. This technique adjusts the location of each grid point to the arithmetic mean of its incident verticesso that xfree = Pi2V xijV j ; yfree = Pi2V yijV j ; zfree = Pi2V zijV j ; (1)where V is the set of incident vertices and x; y; and z are the spatial coordinates of each vertex. Thismethod is computationally inexpensive, but it does not provide any mechanisms that guarantee improvementin element quality. In fact, it is possible to produce an invalid mesh containing elements that are invertedor have negative volume.Freitag et. al. proposed a low-cost, optimization-based alternative to Laplacian smoothing that guar-antees valid elements in the �nal mesh [8]. Several results were given that demonstrated the e�ectivenessof this method compared with Laplacian smoothing for two-dimensional, triangular meshes. Like Laplaciansmoothing, the optimization algorithm is local and uses the union of elements that are adjacent to the freevertex as the solution space. Thus, it can be used as the core of an e�cient parallel algorithm. They pre-sented a P-RAM computational model for parallel implementation based on coloring heuristics. This modelresulted in correct parallel execution and a low run-time bound, and experimental data showed very goodscalable performance on 1 to 64 processors on the IBM SP supercomputer.In this section we extend this algorithm to three-dimensional tetrahedral meshes and note that thealgorithm is useful for hexahedral meshes as well. A parallel algorithm analogous to the two-dimensionalalgorithm has been developed for the three-dimensional case, but we do not focus on that aspect of ourwork here. In this article we describe the formulation of the optimization method and give some usefulmeasures of mesh quality for tetrahedral meshes. The same formulation applies for hexahedral meshes, butdi�erent mesh quality measures must be used. As in the two-dimensional case, we formulate the problemusing analytic expressions for local mesh quality written in terms of free vertex position. Typical measuresfor three-dimensional tetrahedral meshes that have an analytic expression include measures of the dihedralangles, measures of the solid angles, and element aspect ratios. Any combination of these can be used withinthe framework of the optimization method presented here. Our algorithm seeks to maximize the minimumvalue of the mesh quality measure; minimizing the maximum value of the quality measure can be done bynegating the function value. We require that function and gradient evaluations dependent on free vertexposition be provided by the user.The optimization algorithm for each local subproblem is similar to a minimax technique used to solvecircuit design problems [5]. We brie
y review the formulation of the problem here and refer interested readersto a more complete description in our previous paper [8]. To facilitate the discussion of problem formulation,we �rst introduce some useful notation:� x: the position of the free vertex� fi(x): an analytic function for a mesh quality measure that in general is nonlinear. For example, if weconsider maximizing the minimum dihedral angle of the mesh, each tetrahedron will have six functionvalues for each location of the point x. Let the entire set of function values, fi, be S.� gi(x): the analytic gradient of the mesh quality measure corresponding to fi(x)� A: the set of functions that achieve a minimum at point x (the active set)� x�, A�: the optimal solution and the active set at x�As the location of x changes in the solution space, the minimum function value in the correspondingsubmesh is given by the composite function�(x) = mini2S fi(x): (2)We illustrate the character of this function by showing a one-dimensional slice through a typical function� in Figure 2. Note that each fi(x) is a smooth, continuously di�erentiable function and that multiple



function values can obtain the minimum value. Hence, the composite function �(x) has discontinuouspartial derivatives where two or more of the functions fi obtain the minimumvalue; that is, where the activeset A changes.
1

2

3

4

x

h
5

f

f

f

f

fFigure 2: A one dimensional slice through the nonsmooth function �(x). We solve the nonsmooth optimization problem (2) using an analogue of the steepest descent method forsmooth functions. The search direction �g at each step is computed by solving the quadratic programmingproblem min �gT �g where �g =Xi2A�igi(x)subject to Xi2A�i = 1; �i � 0for the �i. This gives the direction of steepest descent from all possible convex linear combinations ofthe gradients in the active set at x. The line search subproblem along �g is solved by �nding the linearapproximation of each fi(x) given by the �rst-order Taylor series approximation. Since this information isavailable for each fi, we can predict the points at which the active set A will change. These points are givenby the intersection of each linear approximation with the projection the current active function in the searchdirection. The distance to the nearest intersection point from the current location gives the initial step length,�. The initial step is accepted if the actual improvement exceeds 90 percent of the estimated improvementor the subsequent step results in a smaller function improvement. Otherwise � is halved recursively until astep is accepted or � falls below some minimum step length tolerance.The optimization process is terminated if one of the following conditions apply: (1) the step size fallsbelow the minimum step length with no improvement obtained; (2) the maximum number of iterations isexceeded; (3) the achieved improvement of any given step is less than some user-de�ned tolerance; or (4) theKuhn-Tucker conditions of nonlinear programmingXi2A� �igi(x�) = 0Xi2A� �i = 1; �i � 0; i 2 A�are satis�ed indicating that we have found a local maximum x� [5].4. Computational ExperimentsThis paper presents results for �ve test cases: two randomly generated meshes and three meshes generatedfor application problems. For each test mesh, a standard starting mesh was generated, and all comparisoncases began with that same mesh. The random meshes were each generated in a cube with points incre-mentally inserted at random in the interior. Each point was connected to the vertices of the tetrahedron



containing it, with points near an existing face or edge in the tetrahedralization projected onto that face oredge. No swapping or smoothing was done as these initial meshes were generated, and mesh quality wascorrespondingly poor at the outset. The �rst case, rand1, has 1086 points approximately equally distributedthrough the domain and 5104 tetrahedra. The second random mesh, rand2 has 5086 points clustered at thecenter of the cube by selecting random numbers from a Gaussian deviate and 25704 tetrahedra.The third and fourth test meshes were generated in the interior of a tangentially-�red (t-�red) industrialboiler and a tire incinerator, respectively. Interior points were inserted at the circumcenter of cells that werelarger than appropriate, based on an automatically computed local length scale, or that had a large dihedralangle and had a volume larger than a user-de�ned tolerance. After the insertion of each point, nearby faceswere swapped by using the in-sphere criterion to improve local mesh connectivity. After all points wereinserted, all faces were swapped by using the minmax dihedral angle criterion. The t-�red mesh has 7265vertices and 37785 tetrahedra, and the tire incinerator has 2570 vertices and 11098 tetrahedra. Becausethese meshes were generated more sensibly than the random meshes, its initial quality is much better thanin the random cases.The �nal test case is a mesh generated around the ONERA M6 wing attached to a 
at wall. This isa standard geometry for testing three-dimensional compressible 
ow solution algorithms. This particularmesh is somewhat coarse, having 6,000 vertices and 31,978 tetrahedra. Hence, the initial mesh quality issomewhat poor, especially near the junction of the wing and the wall.For each test case, we present results for mesh quality using dihedral angles as a quality measure. Themaximum and minimum dihedral angles over the entire mesh are given as an indication of how poor theworst elements are. To give quantitative information about the number of poor tetrahedra, we also give thepercentage of dihedral angles falling below 6, 12, and 18 degrees and above 162, 168, and 174 degrees.4.1 Improvement Using Mesh Swapping Techniques OnlyThe �rst experiment compares the e�ectiveness of several swapping strategies in improving mesh qualityfor the random meshes. Tables 1 and 2 show mesh quality results for the initial random meshes and thesame meshes following face swapping. The results of employing four face-swapping strategies are shown: thein-sphere and minmax dihedral criteria separately, in-sphere followed by minmax, and minmax followed byin-sphere. For each mesh, swapping using the in-sphere criterion followed by the minmax dihedral criterionresults in meshes with far fewer dihedral angles near the unwanted extremes of 0 and 180 degrees. However,in each case, the in-sphere criterion, whether used alone or in conjunction with the minmax angle criterion,introduces some tetrahedra with extremely poor angles into the mesh. Consequently, use of the minmaxangle criterion alone gives the best extremal angles.Min Max % dihedral angles < % dihedral angles >Case Dihed Dihed 6o 12o 18o 162o 168o 174oInitial 0:32o 178:97o 1.41 4.90 9.86 2.40 1.08 0.24In-sphere 3:6 � 10�6o 180:00o 1.07 3.17 6.35 1.30 0.70 0.29Minmax angle 0:54o 178:97o 0.76 3.20 7.40 1.21 0.46 0.11In-sphere, thenminmax angle 3:6 � 10�6o 180:00o 0.45 1.48 3.28 0.58 0.30 0.11Minmax angle,then In-sphere 3:6 � 10�6o 180:00o 1.14 3.23 6.36 1.31 0.74 0.31Table 1: Mesh quality improvement for rand1 with swapping4.2 Improvement Using Mesh Smoothing Techniques OnlyOur baseline smoothing technique is Laplacian smoothing. Our Laplacian smoothing algorithm moves eachvertex to the average of the location of its neighbors, provided that this point location does not result inan invalid mesh. Also, we have implemented a \smart" variant on Laplacian smoothing which also requires



Min Max % dihedral angles < % dihedral angles >Case Dihed Dihed 6o 12o 18o 162o 168o 174oInitial 0:10o 179:84o 2.57 8.33 14.77 4.24 2.04 0.51In-sphere 3:5 � 10�6o 180:00o 1.49 3.96 7.39 1.73 1.00 0.38Minmax angle 0:57o 179:20o 1.51 5.83 11.52 2.51 1.07 0.21In-sphere thenminmax angle 6:0 � 10�6o 180:00o 0.60 1.82 3.78 0.77 0.43 0.15Minmax anglethen In-sphere 3:5 � 10�6o 180:00o 1.38 3.81 7.21 1.64 0.94 0.35Table 2: Mesh quality improvement for rand2 with swapping.that some local mesh quality measure be improved before accepting a change in vertex location. Any localquality criterion suitable for use with the optimization-based smoothing can be used in this context.For optimization-based smoothing, we present results for �ve di�erent objective functions:1. Maximize the minimum dihedral angle (maxmin angle)2. Minimize the maximum dihedral angle (minmax angle)3. Maximize the minimum cosine of the dihedral angles (maxmin cosine)4. Minimize the maximum cosine of the dihedral angles (minmax cosine)5. Maximize the minimum sine of the dihedral angles (maxmin sine)We expect nearly identical results, though not necessarily identical convergence behavior, from two pairs ofthese measures: maxmin angle � minmax cosineminmax angle � maxmin cosine:Tables 3 and 4 show the results of smoothing the random meshes using Laplacian smoothing, smartLaplacian smoothing for two of the �ve criteria given, and optimization-based smoothing for each of the �vecriteria. Results for the other smart Laplacian approaches are not shown because they are identical to oneof the two smart Laplacian results presented.The improvement in mesh quality is not as pronounced for smoothing as for swapping because theconnectivity is too irregular to allow a truly high-quality mesh. Nevertheless, all the optimization-basedsmoothing criteria improve mesh quality signi�cantly, especially in the sense of reducing the number ofelements with extremely poor dihedral angles. The Laplacian smoother does a poor job of eliminating verybad angles. The smart Laplacian smoothers perform better in this respect, but still are signi�cantly worsethan the optimization-based smoothers. Optimization criteria that seek only to force all dihedral angles awayfrom 180 degrees (minmax angle and maxmin cosine) are unsuccessful in eliminating small dihedral angles,while criteria that force dihedral angles away from 0 degrees (maxmin angle and minmax cosine) succeed inalso eliminating large dihedral angles. This di�erence can be important in practice as both large and smallangles can a�ect the quality of the �nal application solution. Note also that the pairs of smoothing criteriaexpected to perform comparably behave similarly, with one exception. The minmax cosine criterion does notimprove the extremal angles as much as its analog, the maxmin angle criterion. The 
atness of the cosinenear 0 and 180 degrees prevents rapid quality improvement when moving points in such tetrahedra, and theoptimization code concludes that improvement is too slow to be fruitful. Finally, the maxmin sine criterion,which should force dihedral angles away from both 0 and 180 degrees, is very successful in removing dihedralangles at both extremes.



Min Max % dihedral angles < % dihedral angles >Case Dihed Dihed 6o 12o 18o 162o 168o 174oLap: No constraint 0:054o 179:93o 1.32 4.02 7.82 1.92 1.02 0.39Lap: Maxmin angle 1:18o 177:43o 0.71 3.23 7.28 1.55 0.58 0.14Lap: Minmax angle 0:67o 177:43o 0.73 3.44 7.55 1.44 0.54 0.091Opt: Maxmin angle 4:79o 175:59o 0.11 1.23 6.21 0.71 0.21 0.0065Opt: Minmax angle 5:37 � 10�4o 172:75o 2.71 5.54 9.09 0.16 0.043 0.00Opt: Maxmin cosine 6:34 � 10�3o 172:56o 2.29 4.85 8.88 0.16 0.020 0.00Opt: Minmax cosine 1:71o 176:21o 0.11 1.31 6.49 0.75 0.19 0.016Opt: Maxmin sine 4:20o 175:73o 0.08 1.05 6.09 0.60 0.11 0.0033Table 3: Mesh quality improvement for rand1 with smoothingMin Max % dihedral angles < % dihedral angles >Case Dihed Dihed 6o 12o 18o 162o 168o 174oLap: No constraint 0:0026o 179:996o 2.45 6.90 12.21 3.46 1.84 0.63Lap: Maxmin angle 0:64o 178:76o 1.58 6.31 12.35 3.03 1.35 0.26Lap: Minmax angle 0:51o 178:83o 1.71 6.39 12.35 2.95 1.24 0.23Opt: Maxmin angle 2:64o 178:35o 0.25 4.47 11.93 1.98 0.59 0.053Opt: Minmax angle 5:59 � 10�5o 174:53o 3.62 7.69 12.93 1.11 0.21 0.0006Opt: Maxmin cosine 1:25 � 10�4o 175:69o 3.30 7.25 12.60 1.00 0.18 0.0045Opt: Minmax cosine 0:10o 179:84o 0.49 4.68 11.93 2.16 0.73 0.12Opt: Maxmin sine 2:58o 177:16o 0.27 4.45 11.75 1.97 0.58 0.019Table 4: Mesh quality improvement for rand2 with smoothing4.3 Improvement Using the Combined Swapping/Smoothing ApproachNext we show that the gains in mesh quality from swapping and smoothing can be made cumulatively.Each swapping technique results in a di�erent distribution of tetrahedron shapes. The minmax dihedralangle swapping results in a mesh a good distribution of angles near 0o and 180o but does not improve theroundness of the tetrahedra. In contrast, the in-sphere swapping technique followed by the minmax dihedralangle swapping results in angles very close to 0o and 180o but with an improved overall shape distribution.To determine which of these two swapping criterion is best to use in a combined approach, we compare theresults of swapping followed by six passes of optimization-based smoothing using both the the maxmin angleand maxmin sine criteria for the �rst random mesh. Table 5 shows that both smoothing criteria e�ectivelyeliminate the very poor tetrahedra in the in-sphere{minmax swapping case, but are not able to improve thedistribution of distorted elements if minmax swapping is used alone.Min Max % dihedral angles < % dihedral angles >Case Dihed Dihed 6o 12o 18o 162o 168o 174oMinmax onlyMaxmin angle 2:85o 178:66o 0.13 2.84 9.49 1.40 0.43 0.048In-sphere, minmaxMaxmin angle 7:46o 175:95o 0.00 0.061 0.78 0.090 0.020 0.0011Minmax onlyMaxmin sine 3:05o 176:11o 0.080 2.74 9.46 1.33 0.30 0.0050In-sphere, minmaxMaxmin sine 7:50o 170:09o 0.00 0.065 0.80 0.079 0.0040 0.00Table 5: Comparison of the e�ectiveness of smoothing for two di�erent swapping options (mesh rand1)



Tables 6 and 7 show the results for the two random meshes of using the best swapping combination|in-sphere swapping, then minmax dihedral angle swapping|followed by each of the eight smoothing optionsdiscussed in the preceding section. The distribution of dihedral angles for each random mesh improvessigni�cantly regardless of the choice of smoothing criterion. As was the case with smoothing used alone, allLaplacian smoothers fail to eliminate poorly shaped elements from the mesh. Again we see that the criteriafor optimization-based smoothing that seek only to remove large angles from the mesh do not succeed ineliminating small angles; however the criteria that eliminate small angles also succeed in eliminating largeangles. Maximizing the minimum sine of the dihedral angles is the most successful smoothing criterion foreliminating poor dihedral angles at both extremes.Min Max % dihedral angles < % dihedral angles >Case Dihed Dihed 6o 12o 18o 162o 168o 174oLap: No constraint 0:12o 179:77o 0.26 0.60 1.25 0.29 0.18 0.085Lap: Maxmin angle 0:47o 179:22o 0.14 0.35 1.02 0.18 0.088 0.048Lap: Minmax angle 0:47o 179:22o 0.19 0.54 1.46 0.19 0.12 0.048Opt: Maxmin angle 13:72o 169:07o 0.00 0.00 0.28 0.020 0.0028 0.00Opt: Minmax angle 3:9 � 10�3o 167:93o 1.28 2.74 4.73 0.031 0.00 0.00Opt: Maxmin cosine 0:026o 168:73o 1.40 2.78 4.79 0.017 0.0056 0.00Opt: Minmax cosine 3:6 � 10�6o 180:00o .011 .042 0.42 0.045 0.0085 0.0056Opt: Maxmin sine 11:77o 163:33o 0.00 0.0028 0.24 0.0085 0.00 0.00Table 6: Mesh quality improvement for rand1 with both swapping and smoothingMin Max % dihedral angles < % dihedral angles >Case Dihed Dihed 6o 12o 18o 162o 168o 174oLap: No constraint 3:4 � 10�4o 180:00o 0.40 0.97 1.89 0.48 0.28 0.13Lap: Maxmin angle 0:22o 179:43o 0.18 0.72 1.75 0.34 0.16 0.042Lap: Minmax angle 1:4 � 10�4o 180.00 0.22 0.84 2.04 0.33 0.15 0.042Opt: Maxmin angle 7:46o 175:95o 0.00 0.061 0.78 0.090 0.020 0.0011Opt: Minmax angle 1:19 � 10�3o 171:62o 1.56 3.13 5.38 0.031 0.0028 0.00Opt: Maxmin cosine 4:80 � 10�4o 175:60o 1.56 3.10 5.38 0.034 0.020 0.0023Opt: Minmax cosine 3:65o 175:39o 0.0045 0.095 0.83 0.10 0.030 0.0028Opt: Maxmin sine 7:50o 170:09o 0.00 0.065 0.80 0.079 0.0040 0.00Table 7: Mesh quality improvement for rand2 with both swapping and smoothingMin Max % dihedral angles < % dihedral angles >Passes Dihed Dihed 6o 12o 18o 162o 168o 174o0 3:62 � 10�6o 180:00o 0.45 1.48 3.27 0.58 0.30 0.111 3:58o 174:80o 0.034 0.49 1.61 0.24 0.051 0.00562 5:34o 171:27o 0.0085 0.00 0.98 0.18 0.017 0.0983 8:01o 169:30o 0.00 0.073 0.68 0.045 0.0028 0.004 9:70o 166:97o 0.00 0.045 0.50 0.023 0.00 0.005 10:40o 164:50o 0.00 0.014 0.34 0.020 0.00 0.006 11:77o 163:33o 0.00 0.0028 0.24 0.0085 0.00 0.00Table 8: E�ect of the number of optimization passes on mesh improvement (rand1 with maxmin sine smoothing)An important question in any local smoothing algorithm is the number of smoothing passes required toimprove the mesh to the point where further improvement is negligible. Tables 8 and 9 show the e�ect of



Min Max % dihedral angles < % dihedral angles >Passes Dihed Dihed 6o 12o 18o 162o 168o 174o0 6:04 � 10�6o 180:00o 0.60 1.82 3.78 0.77 0.43 0.161 0:67o 178:88o 0.13 0.70 2.26 0.33 0.12 0.0262 1:10o 179:01o 0.031 0.32 1.50 0.18 0.051 0.00853 3:32o 177:31o 0.0096 0.19 1.11 0.15 0.039 0.00114 5:46o 175:99o 0.0017 0.12 0.94 0.12 0.029 0.00175 6:66o 176:38o 0.00 0.087 0.83 0.10 0.024 0.00116 7:46o 175:95o 0.00 0.061 0.78 0.090 0.020 0.0011Table 9: E�ect of the number of optimization passes on mesh improvement (rand2 with minmax angle smoothing)Swap Smoothing Smoothing Time per Min MaxCase Time (sec) Time (sec) Calls Call (msec) Dihed DihedSwap only 5.19 | | | 0:57o 179:20oLap: No constraint | 6.54 14382 0.46 0:014o 179:98oLap: Maxmin sine | 37.2 14382 2.59 0:63o 178:83oOpt: Maxmin sine | 244 14382 17.0 1:91o 177:69oSwap + Lap: No constraint 5.19 6.54 14382 0.46 0:0033o 179:99oSwap + Lap: Maxmin sine 5.19 37.2 14382 2.59 0:63o 178:76oSwap + Opt: Maxmin sine 5.19 258 14382 17.9 1:98o 177:85oTable 10: Sample times for mesh improvement (mesh rand2)various numbers of smoothing passes with the maxmin sine criterion on rand1 and with the maxmin anglecriterion on rand2. In both cases swapping was used before smoothing. In each case, mesh quality improvesonly negligibly after the fourth smoothing pass.We conclude this section with a word about computational e�ciency of the optimization-based smoothingapproach. Table 10 compares timings for mesh improvement using swapping, smoothing and a combinationfor rand2 on a 110 MHz SPARC 5. The di�erence in timings for smoothing with and without swapping is dueto di�erences in the number of optimization steps required for the di�erent meshes. The time spent swappingis small compared with smart Laplacian or optimization-based smoothing and is therefore certainly a goodinvestment. For these examples, optimization-based smoothing takes 7 times longer than smart Laplaciansmoothing and 38 times longer than simple Laplacian smoothing. Further work is needed to quantify thegains, if any, in solution speed and accuracy.4.4 Improvement of Application MeshesBecause the application meshes have already been improved by swapping, results are presented only forsmoothing. Table 11 shows the e�ect of smoothing on the dihedral angle distribution for the t-�red meshusing each smoothing criterion. As with the random meshes, Laplacian smoothing does little to removeextremely poor dihedral angles. The use of measures that concentrate on decreasing the maximum dihedralangles (minmax angle and maxmin cosine) has the e�ect of allowing relatively large numbers of small dihedralangles, although the improvement of elements with large dihedral angles is quite striking. The minmax cosinecriterion again fails to improve extremal angles as much as its cousin, maxmin angle. The di�erence betweenmaxmin angle and maxmin sine is fairly small, with maxmin angle giving better extremal angles and maxminsine giving a somewhat better angle distribution.The e�ectiveness of various numbers of smoothing passes on dihedral angle distribution for this case isshown in Table 12 for the maxmin sine criterion. Two optimization passes give nearly all the improvementthat is possible. For comparison, the two-dimensional version of this algorithm typically requires one to twooptimization passes to improve meshes of reasonable quality [8]. The reason fewer optimization passes are



Min Max % dihedral angles < % dihedral angles >Case Dihed Dihed 6o 12o 18o 162o 168o 174oInitial 0:259o 179:632o 0.13 0.45 0.92 0.21 0.10 0.026Lap: No constraint 0:26o 179:63o 0.055 0.13 0.26 0.073 0.044 0.020Lap: Maxmin angle 0:26o 179:63o 0.032 0.090 0.18 0.050 0.025 0.0093Lap: Minmax angle 0:26o 179:63o 0.038 0.11 0.24 0.054 0.028 0.0093Opt: Maxmin angle 2:07o 177:180o 0.014 0.057 0.099 0.027 0.015 0.0018Opt: Minmax angle 0:0315o 174:834o 0.32 0.81 1.69 0.035 0.019 0.0049Opt: Maxmin cosine 0:0070o 177:161o 0.28 0.73 1.59 0.035 0.019 0.0044Opt: Minmax cosine 0:42o 178:313o 0.021 0.058 0.10 0.032 0.016 0.0044Opt: Maxmin sine 1:78o 176:671o 0.016 0.066 0.11 0.033 0.018 0.0013Table 11: Mesh quality improvement for tfire with smoothingMin Max % dihedral angles < % dihedral angles >Passes Dihed Dihed 6o 12o 18o 162o 168o 174o0 0:26o 179:63o 0.13 0.45 0.92 0.21 0.10 0.0261 0:92o 177:33o 0.027 0.094 0.19 0.047 0.024 0.00662 1:35o 176:34o 0.022 0.067 0.12 0.035 0.019 0.00403 1:59o 176:59o 0.019 0.065 0.11 0.034 0.019 0.00314 1:71o 176:85o 0.018 0.063 0.11 0.033 0.018 0.00185 1:74o 176:76o 0.018 0.064 0.11 0.033 0.017 0.00186 1:78o 176:67o 0.016 0.066 0.11 0.033 0.018 0.0013Table 12: E�ect of the number of optimization passes on mesh improvement (tfire with minmax angle smoothing)required for this case than for the random meshes is that the distribution of points is far better initially,resulting in less overall point movement.Table 13 shows the improvement in mesh quality achieved for each of the three application meshes. Forall three cases, mesh quality is improved signi�cantly. The �nal mesh quality di�ers dramatically amongthe three cases, because of the initial topology and point distribution of the meshes. For example, the M6wing mesh began with a very large number of poor dihedral angles in adjacent tetrahedra. While smoothingimproved many tetrahedra, some could not be improved without making a neighboring cell worse, and so noimprovement was made.This clustering of bad tetrahedra is a common occurrence in our �nal meshes, with the worst cells oftensharing vertices, edges, or even faces. Figures 3 and 4 show surface wireframes for the t-�red boiler and tireincinerator, along with the worst tetrahedra|those with dihedral angles less than 10o or greater than 160o.For the t-�red boiler, these tetrahedra fall primarily into a single clump along an corner of the geometry.Figure 5 shows a closeup of a region around the leading edge of the wing at the wall where there is aMin Max % dihedral angles < % dihedral angles >Case Dihed Dihed 6o 12o 18o 162o 168o 174oT-�re boiler before 0:26o 179:63o 0.13 0.45 0.92 0.21 0.10 0.026T-�re boiler after 1:59o 176:59o 0.019 0.065 0.11 0.034 0.018 0.0018Tire incinerator before 0:66o 178:88o 0.11 0.54 1.27 0.072 0.035 0.0075Tire incinerator after 4:34o 174:28o 0.0045 0.014 0.10 0.0060 0.0030 0.0015ONERA M6 wing before 0:0066o 179:984o 0.78 1.63 2.85 0.57 0.41 0.23ONERA M6 wing after 0:035o 179:929o 0.28 0.79 1.69 0.25 0.13 0.048Table 13: Mesh improvement for three application meshes



Figure 3: Surface wireframe of tangentially �red boiler mesh with badly shaped tetsconcentration of poor-quality tetrahedra. Further work is needed to improve quality in di�cult cases suchas these in which boundary constraints or clustering prevents the improvement of poorly shaped elements.5. ConclusionsIn this article we compared combinations of mesh swapping and mesh smoothing techniques used to improvethe quality of tetrahedral meshes. We showed that each mechanism fails to give high-quality meshes whenused individually. That is, all combinations of swapping using in-sphere and minmax quality criteria fail toremove very small and very large angles. Both Laplacian and optimization-based smoothing techniques fail toimprove the general distribution of angles because they cannot change local mesh connectivity. However, weshowed for �ve test cases that the cumulative improvement obtained when combining in-sphere and minmaxswapping followed by optimization-based smoothing results in very high quality meshes. Of the smoothingcriteria considered here, we found that the maxmin sine quality measure was the most e�ective in eliminatingboth small and large angles. In addition, we presented evidence that the remaining poor-quality tetrahedracould not be improved by our current methods because these tetrahedra tend to be clustered together. Inthis situation, swapping fails because local reconnection is not legal, and smoothing fails because improvingone tetrahedron reduces the quality of a neighbor.Several enhancements are being incorporated into the mesh improvement software to increase its e�ec-tiveness and e�ciency. Our current software uses mesh smoothing to improve the quality of the volumemesh once the surface mesh has been generated. We plan to add surface mesh-smoothing capabilities to theoptimization-based algorithm by incorporating additional constraints to bind the free vertex to the boundarysurfaces. We are also interested in examining optimization-based smoothing with other measures includingaspect ratio and solid angles and in developing smoothingmeasures appropriate for use on anisotropic meshes.Finally, we intend to investigate the use of more sophisticated local reconnection algorithms, such as that ofJoe [11], and various other swapping criteria, including swapping to maximize the minimum sine of dihedral
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